


Chapter 6 (Solutions)

mathematics class

ALGEBRAIC EXPRESSIONS

01

Find the formula for the area of the unshaded region.

Area (A) =
$$(a + 2x)^2 - 4x^2$$

= $a^2 + 4ax + 4x^2 - 4x^2$
= $a^2 + 4ax$

The area of the unshaded region is $a^2 + 4ax$

02

Find the product of $(4x^2 - 9)$ and $(2x^2 - 3x + 1)$ and divide the product by $(4x^3 - 7x + 3)$. Is $(4x^3 - 7x + 3)$ a factor of the product.

$$(4x^{2}-9)\times(2x^{2}-3x+1)$$

$$=8x^{4}-12x^{3}+4x^{2}-18x^{2}+27x-9$$

$$=8x^{4}-12x^{3}-14x^{2}+27x-9$$

$$4x^{3}-7x+3) 8x^{4}-12x^{3}-14x^{2}+27x-9 (2x-3)$$

$$8x^{4} 0-14x^{2}+6x$$

$$(-) (-) (+) (-)$$

$$-12x^{3}+0+21x-9$$

$$(+) (-) (-) (+)$$

$$(-) (+)$$

$$(-) (+) (-) (+)$$

 $\therefore 4x^3 - 7x + 3$ is a factor of the product

Chapter 6 (Solutions) ALGEBRAIC EXPRESSIONS

03

If the sides of a rectangle are $(x^2 - x + 2)$ and $(x^2 + x - 2)$, find the area of the rectangle.

Area =
$$(x^2 - x + 2)(x^2 + x - 2)$$

= $[x^2 - (x - 2)][x^2 + (x - 2)]$
= $x^4 - (x - 2)^2$
= $x^4 - [x^2 - 4x + 4]$
= $x^4 - x^2 + 4x - 4$

If
$$x + \frac{1}{x} = 5$$
, find $x^4 + \frac{1}{x^4}$.

$$x + \frac{1}{x} = 5$$

Squaring both sides, $\left(x + \frac{1}{x}\right)^2 = 25$

$$\Rightarrow x^2 + 2 + \frac{1}{x^2} = 25$$

$$\therefore X^2 + \frac{1}{x^2} = 23$$

Chapter 6 (Solutions) ALGEBRAIC EXPRESSIONS

05

Simplify
$$\left(\frac{a}{2} + \frac{b}{8} - \frac{c}{5}\right) \left(\frac{a^2}{4} + \frac{b^2}{64} + \frac{c^2}{25} - \frac{ab}{16} + \frac{bc}{40} + \frac{ca}{10}\right)$$

$$\left(\frac{a}{2} + \frac{b}{8} - \frac{c}{5}\right)\left(\frac{a^2}{4} + \frac{b^2}{64} + \frac{c^2}{25} - \frac{ab}{16} + \frac{bc}{40} + \frac{ca}{10}\right)$$

$$= \left[\frac{a}{2} + \frac{b}{8} + \left(\frac{-c}{5} \right) \right]$$

$$\left[\left(\frac{a}{2} \right)^2 + \left(\frac{b}{8} \right)^2 + \left(\frac{-c}{5} \right)^2 - \left(\frac{a}{2} \right) \left(\frac{b}{8} \right) - \left(\frac{b}{8} \right) \left(\frac{-c}{5} \right) - \left(\frac{-c}{5} \right) \left(\frac{a}{2} \right) \right]$$

$$= \left(\frac{a}{2}\right)^3 + \left(\frac{b}{8}\right)^3 + \left(\frac{-c}{5}\right)^3 - 3\left(\frac{a}{2}\right)\left(\frac{b}{8}\right)\left(\frac{-c}{5}\right)$$

$$=\frac{a^3}{8}+\frac{b^3}{512}-\frac{c^3}{125}+\frac{3abc}{80}$$